
Introduction

Protein kinases (PKs) are an important class of intracellular enzymes involved in the regulation of a large variety of cellular processes. It is now well established that most solid tumors activate multiple signaling pathways and require that several of these pathways be inhibited for effective reduction of tumor burden. One of our goals is to modulate the paradigm of rational kinase inhibitor design to incorporate growth inhibition as an integral measurement to initially assess their ability to act as drug candidates. Instead of starting with target identification, we synthesized a large number (approximately 2000) of novel ATP mimetic kinase inhibitors and tested them for tumor growth inhibition. The use of this strategy has yielded a series of lead compounds, which allowed the identification of novel therapeutic agents that appear to target specific cellular kinases that seem to play a critical role in tumor cell growth. In this presentation, we describe the profile of ON123300, a small molecule kinase inhibitor, that induces cell cycle arrest of a wide range of tumor cells followed by their apoptotic death. This compound was found to be a potent inhibitor of CDK4, In vivo, this drug did not cause hematotoxicity, liver damage or any detectable neurotoxicity. In addition, this compound was found to be a potent inhibitor of tumor growth *in vivo*, and showed a high degree of synergism with several of the chemotherapeutic agents currently used in cancer therapy.

Chemistry

Synthetic route for the synthesis of pyrido[2,3-d]pyrimidines is shown in scheme. The reaction of alkyl amines with commercially available compound 1 in the presence of triethylamine to obtain a compound 2. The ester group in compound 2 was reduced with $LiAIH_{4}$ and the resulting compound 3 was oxidized with MnO₂ to afford corresponding aldehyde 4. The knoevenagel reaction of aldehyde 4 with active methylene compounds in the presence of benzylamine in acetic acid to give compound 5. The compound 5 was treated with mCPBA to get corresponding sulfoxide 6. The methylsulfoxide was replaced by treating with aryl or heteroaryl amines to get title compound pyrido[2,3-*d*]pyrimdidne (**ON 123160 – ON 1231820**)

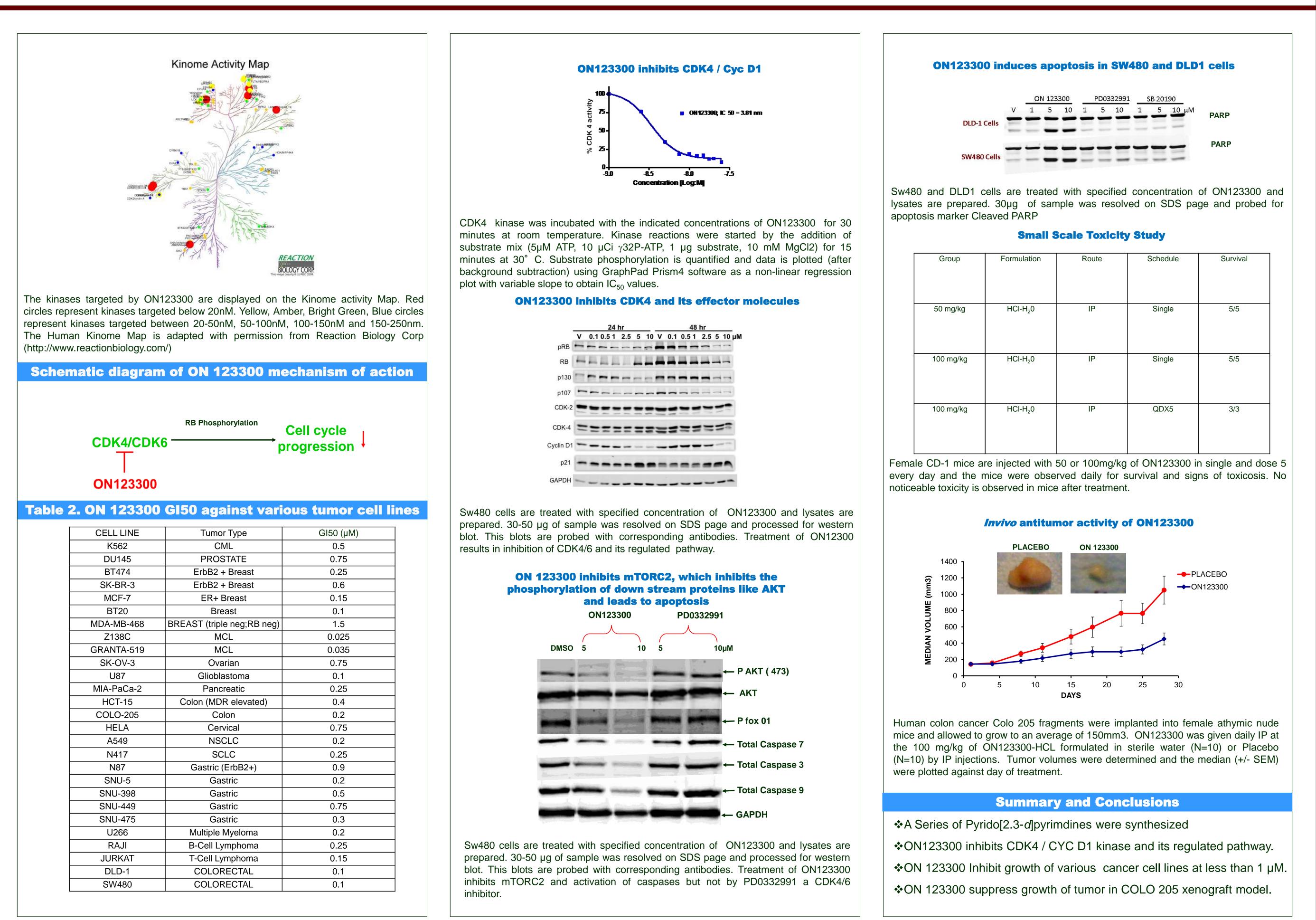
Scheme: Synthesis of Pyrido[2,3-d]pyrimidines

Reagents and Conditions, (i) X-NH₂, Et₃N, THF, RT, 3h. (ii) LiAlH₄, THF, -10 ⁰C - RT, 3h. (iii) MnO₂, CHCl₃, RT, 36h_. (iv) Y-CH₂CO₂H, BnNH₂, ACOH, 100 ⁰C, 5h (v) mCPBA, CH₂Cl₂, RT, 10h. (vi) Z, DMSO or Toluene, 100 ⁰C, 3-10 h

Compd. X

No.	
123460	C ₅ H ₉
123610	C ₅ H ₉
123620	C ₅ H ₉
123760	C ₅ H ₉
123770	C ₅ H ₉
123780	C ₅ H ₉
123790	C ₅ H ₉
123650	C ₅ H ₉
123660	C ₅ H ₉
123950	C ₅ H ₉
123960	C ₅ H ₉
123980	C ₅ H ₉
1231480	C ₅ H ₉
1231250	C ₅ H ₉
1231370	C ₅ H ₉
123300	C ₅ H ₉
1231730	C₅H ₉
123350	C ₅ H ₉
123450	C ₅ H ₉
1231820	C ₅ H ₉
1231000	C ₆ H ₁
123430	CH ₃
1231170	C ₃ H ₇
123220	C ₅ H ₉
123160	C ₅ H ₉

Novel cyano pyridopyrimidines as potent and selective inhibitors of CDK4 kinase


Balaiah Akula ¹, Saikrishna Athuluri Divakar², Stephen C. Cosenza ², Vinay Kumar ²,

1. Onconova Therapeutics Inc, Medicinal Chemistry, Newtown, PA, 18940. 2. Mount Sinai School of Medicine, Oncological Sciences, New York, NY, 10029.

Table 1. Invitro Cytotoxicity

ON 123160 to ON 1231820

Y	Z	IC ₅₀	IC ₅₀ (μ Μ)		
		K562	DU145		
CN	NH-4-chlorophenyl	30	30		
CN	NH-2-methoxyphenyl	15	30		
CN	NH-benzyl	>100	75		
CN	NH-3,4-dimethoxyphenyl	2	5		
CN	NH-3,5-dimethoxyphenyl	15	15		
CN	NH-2,4-dimethoxyphenyl	15	15		
CN	NH-3,4,5-trimethoxyphenyl	2.5	5		
CN	NH-4-indolyl	30	15		
CN	NH-5-indolyl	5	5		
CN	NH-2-pyridyl	0.5	3		
CN	NH-2-methoxy-6-quinolino	0.25	3		
CN	NH-4-cyano-2-pyridyl	5	30		
CN	NH-4-pyridinophenyl	10	10		
CN	NH-(4-morpholino)pyridyl	5	15		
CN	NH-(N-CH ₃ piperazino)pyridyl	5	15		
CN	NH-(N-CH ₃ piperazino)phenyl	0.05	0.025		
CN	acetyl-N-(N-CH ₃ piperazino)phenyl	0.75	5		
CN	NH-(N-morpholino)phenyl	5	15		
CN	NH-piperazino(4-CF ₃ -2-pyridine)	75	>100		
CN	O-(N-CH ₃ piperazino)phenyl	5	15		
CN	NH-(N-CH ₃ piperazino)phenyl	40	1		
CN	NH-(N-CH ₃ piperazino)phenyl	75	75		
	NH-(N-CH ₃ piperazino)phenyl	5	15		
CN					
CN PhSO ₂	NH-(N-CH ₃ piperazino)phenyl	5	5		

E Premkumar Reddy² and M V Ramana Reddy²

MOUNT SINA SCHOOL OF MEDICINE